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Acquaintance with the analysis and design of equal-strength structure elements operating under creep
conditions can be made in [1-4], e.g., Wwhere the body geometry (structure element) is determined for given
loads and temperature such that it would be equally strong. In all the computations noted above, the process
of damageability of the material is not taken into account, and only the steady-state creep equations are used
here. The body is considered heated uniformly. In certain cases, equal strength of a body with a previously
assigned geometry can be realized during creep by a suitable selection ofthe external load and temperature
fields. This paper is devoted to this question. The body is considered nonuniformly heated here. A system
of equations describing all three stages of material creep with the cumulative damage process taken simul-
taneously into account is used. The method of determining the external loads and temperature is given for
the axisymmetric plane strain case. The temperature field is here considered planar and axisymmetric.

A body (structure element) heated nonuniformly and loaded by external forces will be called optimal
in longevity (or equally strong during creep) if damageability at all its points proceeds in an identical manner,
and therefore, simultaneously after a previously assigned time ¢t * % the damageability parameter w reaches its
critical value of one. It is shown in [5] that to realize equal strength of a body, it is necessary and sufficient
to satisfy the equality stz(q *1)/2=¢ ), which it is expedient to call the optimality condition, at each point at
any time 0<t=t ok ® In particular, C is independent of the time under stationary external loads and tempera-
ture, i.e., is a constant C=[(@ +1)m + 1)t **]"1; g, @, m are material characteristics, S, is the second invari-~
ant of the stress tensor deviator, S, = (1/2)Si'si' and the sij are the stress tensor deviator components. We
consider the experimentally established temperature dependence of the coefficient Byto have the form [2]:
B, =Bjexp (@), where By, ¢ are material constants, and © is the temperature which is a function of the co~
ordinates of the body points. Taking this equality into account, the optimality condition for a body loaded by
stationary external loads is written in the form

S§g+1)/2 exp (C@) — CBa‘l- (1)
The system of equations for an optimal body in longevity, that will describe all three stages of creep and take
simultaneously into account the damageability of the material, is simplified considerably and takes the form [5]:

i . ; 2
nij = kS‘lsffV ;\‘ = (ﬂ — g — 2)/21 iv ] = '11 21 37 © = (1 - .u')ll(a,‘l_l).! ( )

where the time functions are

= (= ) =y (200 1) (- 1) g™ (1 — @D
and ky, m, n are material characteristics. Hence the eduilibriurn equations, the creep strain rate continuity
equations, and the appropriate boundary ‘conditions should be satisfied at each point of the body.

Let us consider the solution of the plane axisymmetric problem to determine the external loads and
temperature for a body of given geometry that is equally strong during creep. For instance, we consider a
thin-walled cylindrical tube in a plane axisymmetric temperature field

O (r) =C' + 0O, lar/a. @)

Herea and r are the inner and running radii of the tube. Let us note that (3) is the solution of the heat-con-
duction equation for a cylindrical tube under the assumption of no heat transferat the endfaces for a given con-
vective heat transfer at its inner and outer cylindrical surfaces, or for given temperatures on these surfaces
{6]. Under the assumption of this latter, we obtain

C' =0 (a), 6, = [0 (}) — O (a))/InB, p = bla
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{ is the outer radius of the tube). Substituting 3) into the optimality condition (1), we obtain the stress in-
tensity distribution law over the tube radius:
ir’ﬁ — A I/ RS2

NH (a'r)’, @)
where A = [(z +— 1) (m -+ 1) t4:5,exp (cO (a)) v =¢0,/(g 4 1). Variating the pressure drop @, over the tube
radius, and the external loads which are a combination of inner and outer pressures, compliance with condition
(4) can be achieved. K is hence evident that the boundary conditions in the temperature and in the external
loads cannot be arbitrary. They must be found or appropriate constraints must be indicated. In addition to
condition (), the stress tensor components oy, Oy should satisfy the equilibrium equation [6]

—1/(g+1),
] ;

do,/dr + (o, — ag)/r = 0,
while the creep strain rate tensor components 7., N should satisfy the continuity equation [6]
dng/dr + (g — n.)/r = 0. (5)
Let us introduce the stress function F(r) which satisfies the equilibrium equation identically, where [6]

6, = (I/r)(dF/dr), g = d*Fdr™. )

As an illustration, let us examine the plane strain case. Taking this ihto account, and substituting (6) and (2)
into the continuity equation (5) with ) taken into account, we obtain a homogeneous Euler equation in the stress
function ’

(n—g—Nd*Fidr® — ((n — g — /) d*F/dr* + ((n — g — 3):r*) dF/dr = 0.
Its general solution has the form

Fry=Cy+Cyr?-- Cgrvl, vi=2(n—g—2)(n—g—1). )

It is possible to set Cy=0 since C, does not influence the stress distribution. The stress function (7) should
satisfy the relationship () obtained from the optimality condition. Taking (6) into account, {4) becomes for
the plane strain case '

d*Fidr® — (1/r)(dF/dr) = 2A(a/r)v.
Substituting (7) here and comparing left and right sides, we obtain
v=2/n—g—1), Cg=—24a%vv,. {8)
Therefore, the stress function (7) finally becomes
F(r) = Cy® — 242" /v,
and the stress components (6) here equal
0y == 2C, — (2A/V){a/r), 65 = 2C; — 2A(1 — v)/v)(a/r)v. ©)

It is seen from a comparison of the first equation (8) and the relationship v =c®«/ (g +1) that the pressure drop
over the tube radius cannot be arbitrary. I is determined in terms of the material characteristics and the
geometric size of the tube, i.e.,

8(b) — 6(a) = [2(g + 1)/e(n — g — 1)1 1n B. (10)

it follows from @) that the surface loads can also not be arbitrary. They must be selected in such a manner
as to equilibrate the radial stresses, say, at the inner and outer surfaces of the tube:

oa) = 2C, — 24/v, 6,(b) = 2C, — 24/v{.

This can be achieved by loading the tube with the inner pressure py, the outer pressure py ortheir combination.
In the latter case, we have

P1— Dy = 84 (ﬁv — 1)7 THe Sy = 2A/Vﬁv. (i1)
The integration constant C, is obtained equal to 2C, =8_ ~Dy, While the stress components finally take the form

Or = —Po L sy [1— (01"}, 05 = — py+ 55 [1 — (1 — ) (br7)"]

4

12)

The strain components &y, €y are determined in the form

Ep = — & = &4 () 0 (1),
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after (2) has been integrated with respect to the time, and ) and (12) have been taken into account, where

&, =0.5k;A%/Y @/r)? is the distribution of the strains €y £, OVer the tube radius at the time of its rupture.

It is seen that the stress state (12) in an’'equal-strength tu(fge during creep is steady, while the strain state

is the product of a function of the coordinates by a function of the time. To realized equal strength of a thick~
walled tube during creep, it is necessary to give the geometric size of the tube 8 from the exploitation condi-
tions, the value of the temperature on its inner surface, and the time to rupture t 4. By knowing the char-
acteristics of the material from which the tube will be fabricated, we find A and s from (4) and (11). From
10} we determine the temperature drop and we thereby find the temperature on the outer surface of the tube.
From the first equation in (11) we calculate the pressure drop given first by the inner or outer pressure.

It is interesting to analyze the case when the tube is heated uniformly,i.e., ® 4 =0. Here v =0, and as

follows from 4}, the stress intensity is independent of the radius and equals Szi/ 2=A, To be graphic, we set
p, =0 later. Passing to the limit as v —0 in (11), we find
P = 241nf.

It is seen that this relationship is the analog of the known formula
Px = 2751nf,

which is used extensively in strength computations of cylindrical tubes and vessels under plastic deformation
conditions. Here Tg is the yield point of the material under pure shear, and A degenerates in the limit into
the creep strength of the material defined for a fixed temperature on the basis of t,, hours.

It follows from (12) for p, =0 and v—0 that the stress distribution corresponds to an ideally plastic state
with the sole difference that the quantity p, inthe latter is replaced by py, L.e.

o, = —(p/InP)n(b/r), oy == (py/In B)I1 — In(b/r)].

The case of the plane state of stress can be considered analogously. The method of determining the
external temperature —force fields is analogous to that elucidated above. In both cases the boundary condi-
tions in the temperature and the load are not arbitrary. Therefore, they can be difficult to realize technically.
Tn connection with this, the method elucidated to determine the external loads and temperature in order to be
able to realize equal strength for specific structure elements during creep can be recommended as additional
in the first stages of analysis and design of items. The solution of this problem is very difficult in the most
general case.
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